Preliminary

Connection Diagram

Functional Description

For A-to-B data flow, the device operates in the transparent mode when LEAB is HIGH. When LEAB is LOW, the A data is latched if CLKAB is held at a HIGH or LOW logic level. If LEAB is LOW, the A bus data is stored in the latch/ flip-flop on the HIGH-to-LOW transition of CLKAB. Outputenable OEAB is active-HIGH. When OEAB is HIGH, the

Pin Descriptions

Pin Names	Description
$\mathrm{A}_{1}-\mathrm{A}_{18}$	Data Register A Inputs/3-STATE Outputs
$\mathrm{B}_{1}-\mathrm{B}_{18}$	Data Register B Inputs/3-STATE Outputs
CLKAB, CLKBA	Clock Pulse Inputs
LEAB, LEBA	Latch Enable Inputs
OEAB, $\overline{O E B A}$	Output Enable Inputs

Truth Table (Note 1)

Inputs				Output B
OEAB	LEAB	CLKAB	A	
L	X	X	X	Z
H	H	X	L	L
H	H	X	H	H
H	L	\uparrow	L	L
H	L	\uparrow	H	H
H	L	H	X	B_{0} (Note 2)
H	L	L	X	B_{0} (Note 3)

$\mathrm{X}=$ Immaterial
$\uparrow=$ LOW-to-HIGH Clock Transition
Note 1: A-to-B data flow is shown: B-to-A flow is similar but uses $\overline{O E B A}$, EBA, and CLKBA.
Note 2: Output level before the indicated steady-state input conditions were established.
Note 3: Output level before the indicated steady-state input conditions were established, provided that CLKAB was LOW before LEAB went LOW.
outputs are active. When OEAB is LOW, the outputs are in the high-impedance state.
Data flow for B to A is similar to that of $A-t o-B$ but uses OEBA, LEBA, and CLKBA. The output enables are complementary (OEAB is active-HIGH and OEBA is activeLOW).

Logic Diagram

Absolute Maximum Ratings（Note 4）

Symbol	Parameter	Value	Conditions	Units
V_{CC}	Supply Voltage	-0.5 to +4.6		V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to +7.0		V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	-0.5 to +7.0	Output in 3－STATE	V
		-0.5 to +7.0	Output in HIGH or LOW State（Note 5）	V
I_{IK}	DC Input Diode Current	-50	$\mathrm{~V}_{\mathrm{I}}<\mathrm{GND}$	mA
I_{OK}	DC Output Diode Current	-50	$\mathrm{~V}_{\mathrm{O}}<\mathrm{GND}$	mA
I_{O}	DC Output Current	64	$\mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}} \quad$ Output at HIGH State	mA
		128	$\mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}} \quad$ Output at LOW State	mA
I_{CC}	DC Supply Current per Supply Pin	± 64		mA
$\mathrm{I}_{\mathrm{GND}}$	DC Ground Current per Ground Pin	± 128		mA
$\mathrm{~T}_{\mathrm{STG}}$	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V_{CC}	Supply Voltage	2.7	3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0	5.5	V
I_{OH}	HIGH－Level Output Current		-32	mA
I_{OL}	LOW－Level Output Current		64	mA
$\mathrm{~T}_{\mathrm{A}}$	Free－Air Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate， $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	10	$\mathrm{~ns} / \mathrm{V}$

Note 4：Absolute Maximum continuous ratings are those values beyond which damage to the device may occur．Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability．Functional operation under absolute maximum rated conditions is not implied．
Note 5：I_{0} Absolute Maximum Rating must be observed

Preliminary
LOG91HLへ7tL

DC Electrical Characteristics

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
			Min	Max		
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage	2.7		-1.2	V	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.7-3.6	2.0			$\mathrm{V}_{\mathrm{O}} \leq 0.1 \mathrm{~V}$ or
V_{IL}	Input LOW Voltage	2.7-3.6		0.8		$\mathrm{V}_{\mathrm{O}} \geq \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V}$
V_{OH}	Output HIGH Voltage	2.7-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
		2.7	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$
		3.0	2.0		V	$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$
V_{OL}	Output LOW Voltage	2.7		0.2	V	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$
		2.7		0.5	V	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$
		3.0		0.4	V	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$
		3.0		0.5	V	$\mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}$
		3.0		0.55	V	$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}$
$I_{\text {I(HOLD) }}$	Bushold Input Minimum Drive	3.0	75		$\mu \mathrm{A}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$
			-75		$\mu \mathrm{A}$	$\mathrm{V}_{1}=2.0 \mathrm{~V}$
$I_{\text {I(OD) }}$	Bushold Input Over-Drive Current to Change State	3.0	500		$\mu \mathrm{A}$	(Note 6)
			-500		$\mu \mathrm{A}$	(Note 7)
I_{1}	Input Current Control Pins Data Pins	3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$
		3.6		± 1	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{Cc}
		3.6		-5	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0 \mathrm{~V}$
				1	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$
IofF	Power Off Leakage Current	0		± 100	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$
$\mathrm{I}_{\text {PU/PD }}$	Power up/down 3-STATE Output Current	0-1.5V		± 100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 3.0 \mathrm{~V} \\ & \mathrm{~V}_{1}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$
IozL	3-STATE Output Leakage Current	3.6		-5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	3-STATE Output Leakage Current	3.6		5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=3.6 \mathrm{~V}$
lozH^{+}	3-STATE Output Leakage Current	3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current	3.6		0.19	mA	Outputs HIGH
$\mathrm{I}_{\text {CCL }}$	Power Supply Current	3.6		5	mA	Outputs LOW
$\mathrm{I}_{\text {CCZ }}$	Power Supply Current	3.6		0.19	mA	Outputs Disabled
ICCZ^{+}	Power Supply Current	3.6		0.19	mA	$\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V},$ Outputs Disabled
$\overline{\Delta l}^{\text {CC }}$	Increase in Power Supply Current (Note 8)	3.6		0.2	mA	One Input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$ Other Inputs at V_{CC} or GND

Note 6: An external driver must source at least the specified current to switch from LOW-to-HIGH
Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW.
Note 8: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.
Dynamic Switching Characteristics (Note 9)

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			Units	Conditions$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$
			Min	Typ	Max		
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	3.3		0.8		V	(Note 10)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	3.3		-0.8		V	(Note 10)

Note 9: Characterized in SSOP package. Guaranteed parameter, but not tested.
Note 10: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . Output under test held LOW.

AC Electrical Characteristics

Symbol	Parameter		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$				Units
			$\mathrm{V}_{\mathrm{cc}}=3.3 \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$			150		150		MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Outputs		$\begin{aligned} & \hline 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 3.7 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay LEBA or LEAB to B or A		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 5.1 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.7 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CLKBA or CLKAB to B or A		$\begin{aligned} & \hline 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 5.1 \\ & 5.1 \end{aligned}$	$\begin{aligned} & \hline 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.7 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time		$\begin{aligned} & 1.3 \\ & 1.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & 4.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.3 \\ & 1.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time		$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & \hline 5.8 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 6.3 \\ & 6.3 \end{aligned}$	ns
t_{s}	Setup Time	A before CLKAB	2.1		2.4		ns
		B before CLKBA	2.1		2.4		
		A or B before LE, CLK HIGH	2.4		1.6		
		A or B before LE, CLK LOW	1.4		0.5		
t_{H}	Hold Time	A or B after CLK	1.0		0.0		ns
		A or B after LE	1.7		1.7		
${ }_{\text {tw }}$	Pulse Width	LE HIGH	3.3		3.3		ns
		CLK HIGH or LOW	3.3		3.3		
$t_{\text {OSLH }}$ toshl	Output to Output Skew (Note 11)			$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	ns

specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$).
Capacitance (Note 12)

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	4	pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}	8	pF

Note 12: Capacitance is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883, Method 3012.
 Package Number MS56A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1 mm Wide Package Number MTD56

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
