74LVTH16501 Low Voltage 18-Bit Universal Bus Transceivers

FAIRCHILD

SEMICONDUCTOR

74LVTH16501

Low Voltage 18-Bit Universal Bus Transceivers with 3-STATE Outputs (Preliminary)

General Description

The LVTH16501 is an 18-bit universal bus transceivers combining D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

Data flow in <u>each</u> direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs.

The LVTH16501 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

The transceiver is designed for low voltage (3.3V) $V_{\rm CC}$ applications, but with the capability to provide a TTL interface to a 5V environment. The LVTH16501 is fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining low power dissipation.

Features

 \blacksquare Input and output interface capability to systems at 5V V_{CC}

May 2000

Revised May 2000

- Bushold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink –32 mA/+64 mA
- Functionally compatible with the 74 series 16501
- Latch-up performance exceeds 500 mA

Ordering Code:

Order Number	Package Number	Package Description
74LVTH16501MEA	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300 Wide
74LVTH16501MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
Devices also available in	n Tape and Reel. Specify I	by appending the suffix letter "X" to the ordering code.

© 2000 Fairchild Semiconductor Corporation DS500101

www.fairchildsemi.com

74LVTH16501

Connection Diagram

OEAB —	\downarrow \bigcirc	56	- GND
LEAB -	2	55	- CLKAE
A1-	3	54	-B1
GND -	4	53	- GND
A2-	5	52	-B2
A3	6	51	- B ₃
v _{cc}	7	50	— v _{cc}
•сс А ₄ —	8	49	-B ₄
A5	9	48	— B ₅
A ₆ —	10	47	-B ₆
GND -	11	46	- GND
A7 -	12	45	- B ₇
A ₈ —	13	44	— B ₈
A ₉ —	14	43	— В ₉
A10-	15	42	
A11-	16	41	-B ₁₁
A12-	17	40	-B ₁₂
GND -	18	39	- GND
A ₁₃ -	19	38	— B ₁₃
A14 -	20	37	-B ₁₄
A ₁₅ -	21	36	-B ₁₅
v _{cc} —	22	35	-v _{cc}
A ₁₆ —	23	34	- B ₁₆
A ₁₇ -	24	33	- B ₁₇
GND —	25	32	- GND
A ₁₈ -	26	31	— В _{1 8}
OEBA -	27	30	- CLKBA
LEBA —	28	29	— GND
			l

Pin Descriptions

Pin Names	Description
A ₁ -A ₁₈	Data Register A Inputs/3-STATE Outputs
B ₁ -B ₁₈	Data Register B Inputs/3-STATE Outputs
CLKAB, CLKBA	Clock Pulse Inputs
LEAB, LEBA	Latch Enable Inputs
OEAB, OEBA	Output Enable Inputs

Truth Table (Note 1)

	Inp	outs		Output
OEAB	LEAB	CLKAB	Α	В
L	Х	Х	Х	Z
н	Н	Х	L	L
н	Н	Х	Н	н
н	L	↑	L	L
н	L	Ŷ	Н	н
н	L	н	Х	B ₀ (Note 2)
н	L	L	х	B ₀ (Note 2) B ₀ (Note 3)

 H = HIGH Voltage Level
 L = LOW Voltage Level

 X = Immaterial
 Z = High Impedance

 \uparrow = LOW-to-HIGH Clock Transition

Note 1: A-to-B data flow is shown: B-to-A flow is similar but uses $\overline{\text{OEBA}},$ LEBA, and CLKBA.

Note 2: Output level before the indicated steady-state input conditions were established.

Note 3: Output level before the indicated steady-state input conditions were established, provided that CLKAB was LOW before LEAB went LOW.

Functional Description

For A-to-B data flow, the device operates in the transparent mode when LEAB is HIGH. When LEAB is LOW, the A data is latched if CLKAB is held at a HIGH or LOW logic level. If LEAB is LOW, the A bus data is stored in the latch/ flip-flop on the HIGH-to-LOW transition of CLKAB. Outputenable OEAB is active-HIGH. When OEAB is HIGH, the outputs are active. When OEAB is LOW, the outputs are in the high-impedance state.

Data flow for B to A is similar to that of A-to-B but uses OEBA, LEBA, and CLKBA. The output enables are complementary (OEAB is active-HIGH and OEBA is active-LOW).

Logic Diagram

www.fairchildsemi.com

	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +4.6		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 5)	V
IK	DC Input Diode Current	-50	V _I < GND	mA
ок	DC Output Diode Current	-50	V _O < GND	mA
0	DC Output Current	64	V _O > V _{CC} Output at HIGH State	mA
		128	V _O > V _{CC} Output at LOW State	mA
сс	DC Supply Current per Supply Pin	±64		mA
GND	DC Ground Current per Ground Pin	±128		mA
T _{STG}	Storage Temperature	-65 to +150		°C

00				
VI	Input Voltage	0	5.5	V
I _{OH}	HIGH-Level Output Current		-32	mA
I _{OL}	LOW-Level Output Current		64	mA
T _A	Free-Air Operating Temperature	-40	85	°C
$\Delta t/\Delta V$	Input Edge Rate, $V_{IN} = 0.8V-2.0V$, $V_{CC} = 3.0V$	0	10	ns/V
		-		

Note 4: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.

Note 5: I_O Absolute Maximum Rating must be observed.

	_			T _A = -40°C	_A = -40°C to +85°C		
Symbol	Parameter		(V)	Min	Max	Units	Conditions
V _{IK}	Input Clamp Diode Voltage		2.7		-1.2	V	I _I = -18 mA
VIH	Input HIGH Voltage		2.7-3.6	2.0		V	$V_0 \le 0.1V$ or
V _{IL}	Input LOW Voltage		2.7-3.6		0.8	v	$V_{O} \ge V_{CC} - 0.1V$
V _{OH}	Output HIGH Voltage		2.7–3.6	V _{CC} - 0.2		V	I _{OH} = -100 μA
		-	2.7	2.4		V	I _{OH} = -8 mA
		-	3.0	2.0		V	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage		2.7		0.2	V	I _{OL} = 100 μA
			2.7		0.5	V	I _{OL} = 24 mA
			3.0		0.4	V	I _{OL} = 16 mA
			3.0		0.5	V	I _{OL} = 32 mA
			3.0		0.55	V	I _{OL} = 64 mA
I _{I(HOLD)}	Bushold Input Minimum Drive		3.0	75		μA	$V_{I} = 0.8V$
				-75		μA	$V_{I} = 2.0V$
I _{I(OD)}	Bushold Input Over-Drive		3.0	500		μA	(Note 6)
	Current to Change State			-500		μA	(Note 7)
l _l	Input Current		3.6		10	μΑ	$V_{I} = 5.5V$
	Cor	ntrol Pins	3.6		±1	μΑ	$V_I = 0V \text{ or } V_{CC}$
	Dat	a Pins	3.6		-5	μΑ	$V_I = 0V$
					1	μΑ	$V_I = V_{CC}$
I _{OFF}	Power Off Leakage Current		0		±100	μΑ	$0V \le V_I \text{ or } V_O \le 5.5V$
I _{PU/PD}	Power up/down 3-STATE Output Current		0–1.5V		±100	μΑ	$V_O = 0.5V$ to 3.0V $V_I = GND$ or V_{CC}
I _{OZL}	3-STATE Output Leakage Current		3.6		-5	μA	$V_{0} = 0.0V$
I _{OZH}	3-STATE Output Leakage Current		3.6		5	μA	V _O = 3.6V
I _{OZH} +	3-STATE Output Leakage Current	:	3.6		10	μA	$V_{CC} < V_O \le 5.5V$
I _{CCH}	Power Supply Current		3.6	1	0.19	mA	Outputs HIGH
I _{CCL}	Power Supply Current		3.6	1	5	mA	Outputs LOW
I _{CCZ}	Power Supply Current		3.6		0.19	mA	Outputs Disabled
I _{CCZ} +	Power Supply Current		3.6		0.19	mA	$V_{CC} \le V_0 \le 5.5V$, Outputs Disabled
ΔI_{CC}	Increase in Power Supply Current (Note 8)		3.6		0.2	mA	One Input at V _{CC} – 0. Other Inputs at V _{CC} of

Note 8: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Dynamic Switching Characteristics (Note 9)

Symbol	Parameter	v _{cc}		$T_A = 25^{\circ}C$		Units	Conditions
Cymbol	r di dificici	(V)	Min	Тур	Max	onito	$\mathbf{C}_{\mathbf{L}} = 50 \ \mathbf{pF}, \ \mathbf{R}_{\mathbf{L}} = 500 \Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 10)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 10)

Note 9: Characterized in SSOP package. Guaranteed parameter, but not tested.

Note 10: Max number of outputs defined as (n). n–1 data inputs are driven 0V to 3V. Output under test held LOW.

			T _A = -40	L = 500 Ω			
Symbol	Pa	Parameter V _{CC} = 3.3 ± 0.3V		.3 ± 0.3V	V _{CC} =	Units	
		t the second sec	Min	Max	Min	Max	
MAX			150		150		MHz
PLH	Propagation Delay		1.3	3.7	1.3	4.0	
PHL	Data to Outputs		1.3	3.7	1.3	4.0	ns
LH	Propagation Delay		1.5	5.1	1.5	5.7	
ΉL	LEBA or LEAB to B or A		1.5	5.1	1.5	5.7	ns
.H	Propagation Delay		1.3	5.1	1.3	5.7	
IL	CLKBA or CLKAB to B or A		1.3	5.1	1.3	5.7	ns
ZH	Output Enable Time		1.3	4.8	1.3	5.5	
ZL			1.3	4.8	1.3	5.5	ns
ΉZ	Output Disable Time		1.7	5.8	1.7	6.3	ne
z			1.7	5.8	1.7	6.3	ns
	Setup Time	A before CLKAB	2.1		2.4		
		B before CLKBA	2.1		2.4		
		A or B before LE, CLK HIGH	2.4		1.6		ns
		A or B before LE, CLK LOW	1.4		0.5		1
	Hold Time	A or B after CLK	1.0		0.0		
		A or B after LE	1.7		1.7		ns
1	Pulse Width	LE HIGH	3.3		3.3		ns
		CLK HIGH or LOW	3.3		3.3		
SLH	Output to Output Skew (Note 1	1)		1.0		1.0	
1L				1.0		1.0	ns
ymbol	Parameter		itions		Typical		Units
	Input Capacitance	$V_{CC} = 0V, V_I = 0V \text{ or } V$			4		pF
) te 12: Ca	Input/Output Capacitance apacitance is measured at frequence	V _{CC} = 3.0V, V _O = 0V o y f = 1 MHz, per MIL-STD-883, Method 30			8		pF

www.fairchildsemi.com